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Abstract

A simulation study is carried out in order to compare the performance of the Lincoln–Petersen and Chap-
man estimators for single capture–recapture or dual system estimation when the sizes of the samples or record
systems are not fixed by the researcher. Performance is explored through both bias and variability. Unless
both record probabilities and population size are very small, the Chapman estimator performs better than the
Lincoln–Petersen estimator. This is due to the lower variability of the Chapman estimator and because it is
nearly unbiased for a set of population size and record probabilities wider than the set for which the Lincoln–
Petersen estimator is nearly unbiased. Thus, for those kind of studies where the record probability is high for
at least one record system, such as census correction studies, it should be preferred the Chapman estimator.

Key words: Bias, Capture–Recapture, Dual System Estimation, Multinomial Distribution, Variability.

1 Introduction

Dual (record) system estimation or single capture–recapture estimation is used to estimate the size of a closed
population with two independent samples. This methodology has been widely used in wildlife studies for
estimating abundance parameters [e.g. Kekäläinen et al., 2008, Olsson et al., 2006] and has been proposed for
census correction [Wolter, 1986]. The United States Census Bureau applied this method by the 1990 Post–
Enumeration Survey [see Breiman, 1994, Hogan, 1993, Alho et al., 1993, Mulry and Spencer, 1991] producing
estimations by strata attempting the idea presented by Chandra-Sekar and Deming [1949]. These techniques
have also been used for estimating population prevalence in epidemiological studies using data obtained from
separate sources or record systems [e.g. Seber et al., 2000, Faustini et al., 2000, Abeni et al., 1994].

There are several appropriate approaches depending on the characteristics of the population and the sam-
pling methods for capturing individuals, for example under population heterogeneity or with multiple record
systems. This work is just concerned with the dual system estimation method, i.e., estimation of the size of a
closed population with only two record systems leading to dual samples. Nevertheless, the reader is referred
to Pollock [2000] for a general discussion, to Seber [2001] for relatively new advances from the perspective of
capture–recapture methods and to Chao [2001] for a review of models for closed populations. Also the reader
interested in multiple samples or multiple record systems is really encouraged to consult Bishop et al. [1975]
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where the methodology of estimation for multiple record systems or multiple recapture through log–linear models
is presented.

The aim of this work is to compare the performance of the two most referenced estimators for dual system
or capture–recapture estimation. Performance refers to the bias and the variability of the estimators, for a
widely set of configurations of population size and record probabilities. The estimators to be compared are
the Lincoln–Petersen estimator [see Pollock, 2000] and the modification proposed by Chapman [1951], both
presented in Section 2 and compared through a simulation study in Section 3.

2 Dual System Estimators

The dual system estimation model allows the estimation of the size of a closed population N when two inde-
pendent samples of the population are available, the first one of size n1 and the second one of size n2. The
following assumptions are required: all individuals have the same probability to be caught in each sample, it is
possible to identify the m individuals in both samples and the size of the population is constant. Under these
it is possible to obtain an adequate estimation of N using dual system or single capture–recapture estimators.
The first developed estimator of N for these conditions is due to Lincoln and Petersen [see Pollock, 2000, Le
Cren, 1965] given by

N̂LP =
n1n2

m
(1)

and an estimator of its variance is presented by Bishop et al. [1975] as

σ̂2(N̂LP ) =
n1n2(n1 −m)(n2 −m)

m3
(2)

Even though the Lincoln–Petersen estimator is a maximum–likelihood estimator of the population size, it
lacks finite moments because it is possible that m = 0 if n1 + n2 < N . Thus, Chapman [1951] modifies (1) and
proposes

N̂C =
(n1 + 1)(n2 + 1)

m + 1
− 1 (3)

Taking n1 and n2 as fixed parameters, m follows the hypergeometric distribution. From this Wittes [1972]
demonstrates that the Chapman estimator is unbiased if n1 + n2 ≥ N , and that when n1 + n2 ≤ N its bias is
given by

E(N̂C)−N = − (N − n1)!(N − n2)!
(N − n1 − n2 − 1)!N !

(4)

Hence, under the latter conditions the Chapman estimator underestimates the size of the population. Also
Wittes [1972] presents an estimator of the variance of the Chapman estimator, given by

σ̂2(N̂C) =
(n1 + 1)(n2 + 1)(n1 −m)(n2 −m)

(m + 1)2(m + 2)
(5)

Nevertheless, it is not clear from these results the effects of varying population size and record probabilities
on the direction and size of the bias for the Lincoln–Petersen and Chapman estimators under a sampling method
unconditional to the values of n1 and n2. This scenario is observed in studies where size of the samples can not
be determined by the researcher, but they are random variables.

3 A Simulation Study

In this section it is carried out a simulation study in order to explore the performance of the Lincoln–Petersen
and Chapman estimators for the size of a population under capture–recapture or dual system estimation. The
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performance of these estimators is explored with respect to their biases and their variabilities, for several values
of record probabilities and population size.

Under the assumptions of this method, taking p1 and p2 as the theoretical probabilities of being registered
in the first and second record systems, respectively, unconditional on the values n1 and n2, the vector (m, n1 −
m,n2 −m,N − n1 − n2 + m) follows jointly the multinomial distribution [see Bishop et al., 1975]

Pθ(m,n1 −m,n2 −m, N − n1 − n2 + m) =
N ! pm

11 pn1−m
12 pn2−m

21 pN−n1−n2+m
22

m!(n1 −m)!(n2 −m)!(N − n1 − n2 + m)!
(6)

These multinomial probabilities depend on a vector of parameters θ = (N, p11, p12, p21, p22), where the
probabilities are obtained, from the assumption of independence of the samples, as p11 = p1p2, p12 = p1(1 −
p2), p21 = (1− p1)p2, p22 = (1− p1)(1− p2) = 1− p11 − p12 − p21. Note that for the dual system estimation, the
parameters of the multinomial distribution are reduced to θ = (N, p1, p2).

Using a Monte Carlo simulation, 2000 random vectors from a multinomial distribution with parameters θ

were generated. The multinomial random vectors were generated conditional to m 6= 0, which is a desired
condition for this kind of estimations. This is clear from the description of the method in wildlife studies, where
n1 individuals are captured, marked and released, and a second later sample of n2 individuals is obtained where
m individuals are recaptured. Intuitively the proportion of recaptures in the second sample should be near
the proportion of the first sample in the population, i.e. m/n2 ≈ n1/N , and the Lincoln–Petersen estimator
is obtained as N̂LP = n1n2/m. Thus, it is clear that the basis for this method is the count m of recaptured
individuals.

For generating random vectors from the multinomial distribution (6) above, it is needed to fix three parame-
ters: N, p1 and p2. The mean, the quantiles 2.5% and 97.5% of the simulated distribution of the Lincoln–Petersen
and Chapman estimators are shown in Figure 1 and Figure 2, respectively, as a function of p1 for fixed values
N = {20, 100, 500}, p2 = {0.1, 0.5, 0.9} and for 300 uniformly distributed values of p1 between 0.01 and 0.99.
Note that the roles of p1 and p2 are symmetric. The performance of those estimators is reported relative to
the true population size, i.e. it is reported the performance of N̂/N for each estimator. This is made in order
to compare the relative magnitude of the bias and the variances through different population sizes. Figure
3 and Figure 4 show the mean, the quantiles 2.5% and 97.5% of the simulated distribution of N̂/N , for the
Lincoln–Petersen and Chapman estimators respectively, letting N vary into the set of values {20, 21, . . . , 1000}
fixing p1 = {0.1, 0.3, 0.7} and p2 = {0.1, 0.5, 0.9}. In all those graphs, as the mean of the distribution (solid line)
is closer to 1, the bias is lower. Also, notice that the smaller is the area between the 2.5% and 97.5% percentiles
of the distribution (dotted lines), the lower is the variability of the estimator. This simulation study was carried
out using the statistical software R [R Development Core Team, 2008].

Figure 1 shows that the Lincoln–Petersen estimator has a poor performance with small probabilities and small
population size. For some configurations of the parameters N and p2 it also presents a poor bias performance
for medium values of p1. As a general overview, the Lincoln–Petersen estimator seems to be nearly unbiased for
a compromise between N, p1 and p2 under the multinomial distribution of (m,n1−m,n2−m, N −n1−n2 +m).
For example, as it can be seen in Figure 1, for N = 20, p2 = 0.1 this estimator underestimates the true value
N except for large values of p1, i.e. p1 > 0.7, where it becomes nearly unbiased. Also, for N = 100, p2 = 0.1
and N = 20, p2 = 0.5 it underestimates for values of p1 near 0, but for values p1 > 0.15 it overestimates until p1

around 0.8, where it becomes nearly unbiased. Even though this estimator is nearly unbiased for N = 500, for
almost all values of p1 and p2, it presents bias for very small values of p1, but its bias decreases as p1 increases.
As it is shown in Figure 1, this estimator has a similar performance in terms of its bias for N = 500, p2 = 0.1
and N = 100, p2 = 0.5 due it presents a negative bias for very small values of p1, later it presents positive bias,
and finally it becomes nearly unbiased. For N = 500, p2 = 0.5; N = 100, p2 = 0.9 and N = 500, p2 = 0.9 this
estimator is nearly unbiased for almost all values of p1, except when it is very near to 0, i.e. p1 < 0.1. Thus the
performance of the bias of this estimator can be compensated by increasing the record probabilities when there
are small populations, as a compromise between N, p1 and p2.

In Figure 2 it can be seen that the bias of the Chapman estimator also depends of a compromise between
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Figure 1: Relative performance of the Lincoln–Petersen estimator as a function of p1 for fixed N
and p2. The solid line, the upper and lower dotted lines denote the mean, the 97.5% and 2.5%
quantiles of the simulated distribution of N̂LP /N .

N, p1 and p2. However, the bias of this estimator is never positive, as it is known since the work of Wittes
[1972] for a sampling method conditional to n1 and n2 which leads to the hypergeometric distribution of m. In
comparison with the Lincoln–Petersen estimator, the Chapman estimator is nearly unbiased, for the same N

and p2, since smaller values of p1, except when N = 20 and p2 = 0.1 where it is unbiased only for p1 ≈ 1. For
example, this estimator is nearly unbiased for N = 100, p2 = 0.1 and N = 20, p2 = 0.5 when p1 > 0.4, for
N = 500, p2 = 0.1 and N = 100, p1 = 0.5 when p1 > 0.1, for N = 20, p2 = 0.9 when p1 > 0.2, and for N = 500,
p2 = 0.5; N = 100, p2 = 0.9 and N = 500, p2 = 0.9 the Chapman estimator is unbiased for almost all p1, except
for p1 < 0.05, i.e., the Chapman estimator is nearly unbiased for a range of values of p1 wider than the range of
values for which the Lincoln–Petersen estimator is nearly unbiased.

Comparing Figure 1 and Figure 2 shows that the variance of the distribution of the Lincoln–Petersen estimator
is larger than the variance of the distribution of the Chapman estimator. Nevertheless, for both estimators, their
variances do not necessarily decreases as p1 increases, but under conditions of nearly unbiasedness this holds
true.
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Figure 2: Relative performance of the Chapman estimator as a function of p1 for fixed N and p2.
The solid line, the upper and lower dotted lines denote the mean, the 97.5% and 2.5% quantiles
of the simulated distribution of N̂C/N .

The performance exposed above is also shown in Figure 3 and Figure 4. For example, for all the values
of N reported with p1 = p2 = 0.1, the variability of N̂LP is greater than the variability of N̂C , and for the
Lincoln–Petersen estimator the bias goes from negative to positive and it approaches zero very slowly as N

increases, in contrast with the Chapman estimator, which is nearly unbiased for N > 500 with the same record
probabilities. In general, for small record probabilities, the performance of the Chapman estimator is better in
bias and variance. This also can be shown by the comparison of Figure 3 and Figure 4 for p1 = 0.3, p2 = 0.1.
Also for the other configurations of p1 and p2 reported, the variances of the Chapman estimator are lower than
the variances of the Lincoln–Petersen estimator. However, the performance of both estimators is very similar
for high record probabilities, for all values of N reported, as it can be shown for p1 = 0.7, p2 = 0.9.
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Figure 3: Relative performance of the Lincoln–Petersen estimator varying the size of the popu-
lation for fixed p1 and p2. The solid line, the upper and lower dotted lines denote the mean, the
97.5% and 2.5% quantiles of the simulated distribution of N̂LP /N .

4 Conclusion

Unless both record probabilities and population size are very small, the Chapman estimator presents a better
performance in comparison with the Lincoln–Petersen estimator. In general, the Chapman estimator has a lower
variance and it reaches the unbiasedness for a set of parameters wider than the set of parameters for which the
Lincoln–Petersen estimator is unbiased. Also a disadvantage of the Lincoln–Petersen estimator is presented by
its positive bias for a large set of configurations of record probabilities and population size, while the Chapman
estimator is never positively biased, and thus it can be considered as conservative. Thus, for those kind of
studies where the record probability is high for at least one record system, it should be preferred to use the
Chapman estimator. Such case is presented in census corrections through Post–Enumeration Surveys, where
the probability to be registered in the census is high.
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Figure 4: Relative performance of the Chapman estimator varying the size of the population for
fixed p1 and p2. The solid line, the upper and lower dotted lines denote the mean, the 97.5% and
2.5% quantiles of the simulated distribution of N̂C/N .
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